Molecular Determinants of Agonist Discrimination by NMDA Receptor Subunits: Analysis of the Glutamate Binding Site on the NR2B Subunit

نویسندگان

  • Bodo Laube
  • Hirokazu Hirai
  • Mike Sturgess
  • Heinrich Betz
  • Jochen Kuhse
چکیده

NMDA receptors require both L-glutamate and the coagonist glycine for efficient channel activation. The glycine binding site of these heteromeric receptor proteins is formed by regions of the NMDAR1 (NR1) subunit that display sequence similarity to bacterial amino acid binding proteins. Here, we demonstrate that the glutamate binding site is located on the homologous regions of the NR2B subunit. Mutation of residues within the N-terminal domain and the loop region between membrane segments M3 and M4 significantly reduced the efficacy of glutamate, but not glycine, in channel gating. Some of the mutations also decreased inhibition by the glutamate antagonists, D-AP5 and R-CPP. Homology-based molecular modeling of the glutamate and glycine binding domains indicates that the NR2 and NR1 subunits use similar residues to ligate the agonists' alpha-aminocarboxylic acid groups, whereas differences in side chain interactions and size of aromatic residues determine ligand selectivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of acute exposure to ethanol on distribution of NR1 subunit of NMDA receptor of glutamate in cerebral cortex of chick embryo

Introduction: There is considerable evidence that glutamate-mediated excitatory neurotransmission plays an important role in mediating the behavioral actions of acutely administered ethanol. The aim of the present study was to investigate the effect of acute ethanol exposure on NR1 subunit of NMDA (n-methyl-d-aspartate) receptor distribution in the cerebral cortex of chick embryo on the 10th...

متن کامل

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

The micromolar zinc-binding domain on the NMDA receptor subunit NR2B.

Eukaryotic ionotropic glutamate receptor subunits possess a large N-terminal domain (NTD) distinct from the neighboring agonist-binding domain. In NMDA receptors, the NTDs of NR2A and NR2B form modulatory domains binding allosteric inhibitors. Despite a high sequence homology, these two domains have been shown to bind two ligands of strikingly different chemical nature. Whereas the NTD of NR2A ...

متن کامل

Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors.

The four N-methyl-d-aspartate (NMDA) receptor NR2 subunits (NR2A-D) have different developmental, anatomical, and functional profiles that allow them to serve different roles in normal and neuropathological situations. Identification of subunit-selective NMDA receptor agonists, antagonists, or modulators could prove to be both valuable pharmacological tools as well as potential new therapeutic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997